
Simulation-based Testing of Unmanned Aerial Vehicles with

Aerialist

Sajad Khatiri
Università della Svizzera italiana &

Zurich University of Applied Sciences
Winterthur, Switzerland

sajad.mazraehkhatiri@{usi,zhaw}.ch

Sebastiano Panichella
Zurich University of Applied Sciences

Winterthur, Switzerland
sebastiano.panichella@zhaw.ch

Paolo Tonella
Università della Svizzera italiana

Lugano, Switzerland
paolo.tonella@usi.ch

ABSTRACT

Simulation-based testing is crucial for ensuring the safety and re-
liability of unmanned aerial vehicles (UAVs), especially as they
become more autonomous and get increasingly used in commercial
scenarios. The complexity and automated nature of UAVs requires
sophisticated simulation environments for effectively testing their
safety requirements. The primary challenges in setting up these
environments pose significant barriers to the practical, widespread
adoption of UAVs. We address this issue by introducing Aerial-
ist (unmanned AERIAL vehIcle teST bench), a novel UAV test
bench, built on top of PX4 firmware, that facilitates or automates
all the necessary steps of definition, generation, execution, and
analysis of system-level UAV test cases in simulation environments.
Moreover, it also supports parallel and scalable execution and anal-
ysis of test cases on Kubernetes clusters. This makes Aerialist a
unique platform for research and development of test generation
approaches for UAVs. To evaluate Aerialist’s support for UAV
developers in defining, generating, and executing UAV test cases,
we implemented a search-based approach for generating realistic
simulation-based test cases using real-world UAV flight logs. We
confirmed its effectiveness in improving the realism and represen-
tativeness of simulation-based UAV tests.

Code Repository: https://github.com/skhatiri/Aerialist
Demo Video: https://youtu.be/k_bqYpWItSg

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation.

KEYWORDS

Unmanned Aerial Vehicles, Test Generation, Simulation

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs), equipped with onboard cam-
eras and sensors have demonstrated the possibility of autonomous
flights in real environments, leading to great interest in various
application scenarios: crop monitoring, surveillance, medical and
food delivery [1]. Over the years, support for UAV developers has
increased with open-access projects for software and hardware such
as the autopilot support provided by Ardupilot [2] and PX4 [3].

The complexity and automated nature of UAVs require methods
to systematically and effectively test their safe operation in dynamic
environments. Researchers proposed the use of digital twins, i.e.,
virtual representations (simulations) of real-time, physical objects
or processes, to simulate and test generic cyber-physical systems
(CPS) in diversified scenarios [4] and support test automation [5].

Empirical studies have proven that UAV bugs can be potentially
detected before field tests if proper simulation-based testing is in
place [6–8]. This suggests the need for further research on setting
up advanced simulation environments that test UAVs’ behavior
in real-world scenarios [9]. However, the engineering complexity
of UAV test environments [10, 11], and the difficulty of setting
up realistic-enough simulation environments that can capture the
same bugs as physical tests [12] represent relevant obstacles. The
design of realistic test cases [10, 11] that can leverage the system in
diversified scenarios [9] and reproduce real-world issues [13] require
the aforementioned advances in the UAV testing environments.

In this paper, we introduce Aerialist (unmanned AERIAL

vehIcle teST bench), a novel test bench for UAV software, that
automates all necessary UAV testing steps: setting up the test en-
vironment, building and running the firmware code, configuring
the simulator with the simulated world properties, connecting the
simulated UAV to the firmware and applying proper UAV configu-
rations at startup, scheduling and executing runtime commands,
monitoring the UAV at runtime for any issues, and extracting the
flight log file after test completion.

With Aerialist, we aim to provide software testing researchers
with a popular UAV case study and an easy-to-use test automa-
tion and analysis platform to facilitate their onboarding in the
UAV domain. This allows them to conveniently experiment with
approaches that overcome the above-mentioned UAV simulation-
based testing challenges. Aerialist’s adoption as the platform for
the first UAV Testing Competition [14] organized by the Search-
Based and Fuzz Testing (SBFT) workshop [15] is such an initiative
designed to inspire and encourage the software testing community
to direct their attention toward UAVs as a rapidly emerging and
crucial domain[14].

We evaluated Aerialist’s practical usefulness for UAV devel-
opers by experimenting with a search-based approach that anal-
yses the logs from real UAV flights and automatically generates
simulation-based test cases in the neighborhood of such real flights
[9]. During our experiments, we observed that one of the challeng-
ing aspects of test case generation for UAVs is represented by the
necessity of parallel and scalable running of the test cases (specifi-
cally when using search-based approaches which require executing
test cases with several configurations). The Aerialist’s support for
the definition and execution of large-scale simulation experiments
on Kubernetes clusters addresses these problems with increased
reliability and scalability of UAV test outcomes.

https://orcid.org/0000-0003-0354-9747
https://github.com/skhatiri/Aerialist
https://youtu.be/k_bqYpWItSg

Figure 1: High-level architecture of Aerialist

2 THE AERIALIST TOOL

Aerialist is a modular and extensible test bench for UAV software
and it aims to facilitate and automate all the necessary steps of
definition, generation, execution, and analysis of system-level test
cases for UAVs. Figure 1 demonstrates its architecture, with the
implementation [16] currently supporting the PX4 platform [3](a
widely used open-source UAV firmware), and the potential to be
extended to support other UAV platforms.

The input is a Test Description file which defines the UAV and
environment configurations and the test steps. The Test Runner
subsystem, which abstracts any dependencies to the actual UAV,
its software platform, and the simulation environment prepares
the environment for running the test case as described in the test
description. After setting up the simulation environment (if testing
a simulated UAV), the Test Runner connects to the (simulated or
physical) UAV and configures it according to the startup instruc-
tions. Then, it sends runtime commands, monitors the UAV’s state
during the flight, and extracts flight logs at the end of the test for
future analysis. Each module is detailed in the following sections.

2.1 UAV Test Description

The de-facto testing standard of UAVs relies on manually-written
system-level tests to test UAVs in the field. These tests are defined as
software configurations (using parameters, config files, etc.), in a
specific environment setup (e.g., obstacle placement, lighting con-
ditions), and a set of runtime commands. The runtime commands
received during the UAV flight (e.g., from a remote controller) make
the UAV fly with a specific human observable behavior (e.g., trajec-
tory, speed, distance to obstacles).

Hence, Aerialist models a UAV test case with the following
set of test properties and uses a yaml structure (see Aerialist’s
repository [16] for details) to describe the test.

• Drone Settings: UAV configuration (i.e., all parameter values
and configuration files) required to start the simulation.

• Environment Settings: Simulation configurations (e.g., used
simulator, obstacles’ position/shape, wind speed).

• Commands: Timestamped external commands from the
ground control station (GCS) or the remote controller (RC)

to the UAV during the flight (e.g., change flight mode, go in
a specific direction, enter mission mode).

• Expectation (optional): time series of sensors’ reading that
the test flights are expected to follow closely.

2.2 UAV Software Platform

2.2.1 PX4. Aerialist aims to abstract low-level technical depen-
dencies to the actual UAV software used to implement the UAV
under test. PX4 [3] open-source flight control platform is often used
to implement a UAV system. PX4 supports various flight modes,
which provide different levels of autopilot assistance, ranging from
automation of common tasks (e.g., takeoff and landing) or flying
a preplanned path, to mechanisms that make it easier to hold a
certain altitude level or position when needed.

PX4 supports Software In-the-Loop (SIL) simulation [17] to safely
execute UAV flights in simulation environments and check novel
control algorithms before actually flying the UAV, limiting the risk
of damaging the vehicle. Since the communication to both real and
simulated UAVs are technically identical, Aerialist can easily auto-
mate tests in both the real world and the simulation environment.

2.2.2 UAV Simulator. Simulators allow PX4 to control a modeled
vehicle in a pre-defined simulated world. PX4 communicates with a
physics simulator to receive sensor data and send actuator control
commands back. The UAV pilot can also interact with the simulated
vehicle (similar to a real vehicle) using a GCS, RC, or an offboard
API (e.g. ROS). Aerialist currently supports test execution using
two PX4-supported simulators [17] (Gazebo and jMAVSim) and can
be extended to support others.

2.2.3 Flight Logs. PX4 logs any message communicated between
RC or GCS and UAVs, or between its internal modules. This includes
the sensor outputs, location, other estimations based on sensor
readings, the commands sent to the UAV, and the errors/warnings
from the internal modules. The stored logs are used by developers
to investigate issues encountered during the flight. A sample flight
log used in our experiments is available online1.

2.3 Aerialist’s Test Runner

2.3.1 Generator. The Generator module deals with setting up the
simulated world before testing UAVs in SIL mode. It sets up and
prepares the simulation environment as described in the test de-
scription, in a specific simulator (e.g., Gazebo, jMAVSim), along
with the described static and dynamic objects and simulated UAV.

2.3.2 Configurator. This module is responsible for setting up and
initializing the UAV under test (simulated or real) before flying the
UAV, according to the test description. This includes building the
code, connecting to the UAV via MAVLink, setting the parameters,
uploading any needed resources, etc.

2.3.3 Commander. This module is responsible for all the runtime
communications to the UAV, including scheduling and sending
the RC commands (e.g., manual sticks, flight mode changes, ar-
m/disarm), communications from GCS, or the offboard commands
coming from a companion computer.

1https://logs.px4.io/plot_app?log=f986a896-c189-4bfa-a11a-1d80fa4b9633
2

 https://logs.px4.io/plot_app?log=f986a896-c189-4bfa-a11a-1d80fa4b9633

2.3.4 Monitor. The monitor is responsible for runtime analysis
of UAV state during the flight. Using MAVLink, we are able to
subscribe to any messages communicated between PX4 modules,
including sensor values. This allows monitoring of any potential
runtime checks described in the test description.

2.3.5 Analyst. The module is responsible for the post-flight analy-
sis, mostly based on the extracted flight log. It parses the log files
and extracts any relevant data to analyze test results based on the
given expectations in the test description.

3 USING AERIALIST

3.1 Command Line Interface

Aerialist can be used as a Python command-line utility, which
needs proper setup and configurations of the PX4 platform for
execution. To simplify this process, we have included a Dockerfile
that sets up all the requirements:
docker build . -t aerialist

docker run -it aerialist bash

This will open a bash terminal to a Docker container that directly
supports the execution of UAV test cases. The corresponding Docker
image (available at Dockerhub2) includes all the necessary tools
and configurations including Gazebo, PX4, and the Aerialist CLI.
After each test execution, Aerialist gathers the flight logs from
the simulation containers and stores them on the host machine.

Test Description. Aerialist uses a model called UAV test de-
scription for describing the tests. A sample yaml file used to describe
the UAV test, and how to execute and evaluate it, is given below.
drone:

port: sitl # conected drone type {sitl , ros , cf}

params_file: path/to/params.csv # params file address

mission_file: path/to/mission.plan # mission file addr.

simulation:

simulator: gazebo # simulation engine {gazebo ,jmavsim ,

ros}

speed: 1 # simulator speed relative to real -time

headless: true # execute without simulator GUI

obstacles: [l,w,h, x,y,z, r] # box size , position , and

rotation

home_position: [lat ,lon ,alt] # drone 's initial position

test:

commands_file: path/to/commands.csv # runtime commands

file address

assertion:

log_file: path/to/log.ulg # reference log file address

variable: trajectory # flight behavior to compare

agent:

engine: docker # test execution environment {k8s ,

docker , local}

count: 1 # no. of parallel runs (only for k8s)

Using such descriptions, one can easily run a UAV test case with
the following command:
python3 aerialist exec --test path/to/test.yaml

Alternatively, users can execute the same test case by providing
proper CLI arguments instead of the yaml description:
2https://hub.docker.com/repository/docker/skhatiri/aerialist

python3 aerialist exec --drone sitl --params path/to/

params.csv --mission path/to/mission.plan --

simulator gazebo --commands path/to/commands.csv --

log path/to/log.ulg --engine docker

More sample test description files, as well as corresponding com-
mand line options, can be found in the repository [16].

3.2 Python Package

Since we target to have Aerialist as a platform and building block
for future research on testing UAVs, we put effort into the exten-
sibility and usability of the tool as a software library that can be
integrated into other applications, such as test generators. Specif-
ically, we fully documented the tool and provided a public and
self-contained Python package3 and Docker image2, as well as sam-
ple code snippets for its usage as a library for UAV test definition
and execution4 and complete test generation approaches built on
top of its functionalities5.

3.3 Usage Scenarios

Aerialist supports automating both autonomous (mission) and
manual (remote-controlled) flights. It also supports executing the
tests locally using local PX4 dependencies or inside pre-configured
docker containers, as well as deploying the test execution workload
in a Kubernetes cluster. Thus, Aerialist can be used in various
settings as detailed below. It can be used as a local Test Bench
during the development phase of UAV systems. It can also be in-
tegrated into their DevOps pipeline as a CI Test Runner. Most
importantly, Aerialist can be used by UAV testing researchers as
an Experiment Platform to evaluate their testing strategies.

3.3.1 UAV Test Bench. Aerialist can be used as a command line
tool for locally executing simulation-based test cases for drones,
while the graphical interface of the simulators can be used to visu-
ally follow the UAV behavior at runtime. It can also be used to replay
a pre-logged flight, which could be quite handy when debugging
certain failures, or when using a single case study for improving
control algorithms.

3.3.2 DevOps Test Runner. Currently, the testing stage of the Con-
tinuous Integration (CI) pipeline of many CPS and UAV systems
lacks an effective system-level testing solution. Although simula-
tions have been used to facilitate testing, there are still technological
challenges in automating simulation-based testing in standard CI
platforms. Aerialist is Dockerized and easy to integrate with mod-
ern CI platforms, provides a simple model to describe the test cases,
and a proper CLI to automatically execute and evaluate the test
cases. Hence, it can be used by UAV practitioners to fill this gap.

3.3.3 UAV Testing Research Platform. In recent years, software test-
ing researchers have shown more interest in CPSs as a new domain.
However, during our previous study [9] on test case generation
for UAVs, we realized that the community lacks a proper tool that
supports large-scale experiments. Hence, we extended Aerialist
into an experimental platform suitable for research on different
aspects of testing UAV systems (e.g., test generation).
3https://pypi.org/project/aerialist/
4https://github.com/skhatiri/UAV-Testing-Competition/tree/master/snippets
5https://github.com/skhatiri/Surrealist

3

https://hub.docker.com/repository/docker/skhatiri/aerialist
https://pypi.org/project/aerialist/
https://github.com/skhatiri/UAV-Testing-Competition/tree/master/snippets
https://github.com/skhatiri/Surrealist

Figure 2: A flaky test identified using Aerialist (10 runs)

Scalability: To ensure easy and fast execution and analysis of
various UAV tests, we enable Aerialist users to run multiple tests
in parallel in a Kubernetes cluster rather than on local machines.
The flight simulations are transformed into Kubernetes Jobs and
executed inside isolated Docker containers. After the test execu-
tions, the flight logs are uploaded to a cloud storage and processed
centrally by the CLI.

Reliability: Due to the non-deterministic nature of the control
mechanisms and the surrounding environment, the UAV behavior
can be non-deterministic in both simulation and real-world settings.
Specifically, given the exact same test scenario, the UAV can behave
slightly differently on each test execution. In specific corner cases
(see figure 2), the difference could be more severe and important,
potentially failing the test in some runs and passing it in others.
Moreover, the performance of the UAV in simulation heavily relies
on the processing resources of the computer or Docker container
running Aerialist. To ensure reliable test outcomes, Aerialist
provides facilities to run multiple executions of the same test case in
parallel (each with a fixed resource utilization) to eliminate outliers
in results. For example, by running each test case n times, users can
extract logs and compute the average flight trajectory.

4 EVALUATION

In our recent research [9], we evaluated Aerialist as an experi-
mental platform to propose a novel search-based approach to auto-
matically generate simulation-based test cases in the neighborhood
of real-world UAV flights, improving the realism of SIL testing. Our
approach initially analyzes the flight log, extracts available test
description properties, and searches for optimal values of unknown
properties to replicate the real-world UAV’s behavior in the simu-
lation environment. Then, it smoothly manipulates the replicated
test description to identify related test cases that could potentially
trigger unsafe UAV behavior in simulation. Figure 2 illustrates a
challenging and flaky test case we generated for the autonomous
flight in the presence of simple obstacles.

Our search-based approach starts with a simple and easy place-
ment of the right side obstacle, and then step-by-step moves it in
different directions to potentially make the path planning harder
for the UAV. During this search process, an average of 50 different
obstacle placements were evaluated using Aerialist, i.e., the flight
was simulated and analyzed. Each of these test cases was executed
10 times in parallel to eliminate the outlier effect, account for the
non-deterministic behaviors, and identify flaky tests. To ensure a
statistically significant result, the whole process was also repeated
10 times with each repetition taking about 5 hours. In total, with
our limited Kubernetes resources (60 VCPUs and 80 GBs of RAM),
it required us about 2 full days to conduct all 5,000 simulations.
This would have taken at least 10 times more (20 days) on a single
machine, while there is still the potential to speed up the whole
process up to 10 times (5 hours) by running all the 10 repetitions in
parallel given enough Kubernetes processing resources.

5 CONCLUSION

The development of Aerialist offers a promising solution to the
challenges of creating advanced simulation environments for test-
ing the safety requirements of unmanned aerial vehicles. With its
automated functionalities and support for reliable and scalable test
case executions, Aerialist provides a comprehensive experiment
platform to support future research on UAV testing tools in both
simulated and real UAV scenarios. Our evaluations show that the
use of Aerialist can improve the feasibility and ease of implemen-
tation of search-based test case generation approaches for UAVs,
and can significantly improve the required time for running the
experiments thanks to its capability to run multiple tests in parallel
in a Kubernetes cluster.

CRediT AUTHOR STATEMENT

Sajad Khatiri: Conceptualization, Methodology, Software, Valida-
tion, Investigation,Writing –Original Draft. SebastianoPanichella:
Conceptualization, Methodology, Writing – Review & Editing, Su-
pervision, Project Administration, FundingAcquisition.PaoloTonella:
Conceptualization, Methodology, Writing – Review & Editing, Su-
pervision.

ACKNOWLEDGMENT

We thank theHorizon 2020 (EUCommission) support for the project
COSMOS, Project No. 957254-COSMOS.

REFERENCES

[1] X. Zhang, Y. Liu, Y. Zhang, X. Guan, D. Delahaye, and L. Tang, “Safety assessment
and risk estimation for unmanned aerial vehicles operating in national airspace
system,” Journal of Advanced Transportation, 2018.

[2] Ardupilot.org, “Ardupilot – versatile, trusted, open,” 2007, accessed: 07.02.2022.
[Online]. Available: https://ardupilot.org/

[3] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded open
source robotics framework for deeply embedded platforms,” in international
conference on robotics and automation. IEEE, 2015, pp. 6235–6240.

[4] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and A. Panichella, “Single
and multi-objective test cases prioritization for self-driving cars in virtual envi-
ronments,” ACM Transactions on Software Engineering and Methodology (TOSEM),
2022.

[5] M. Alcon, H. Tabani, J. Abella, and F. J. Cazorla, “Enabling unit testing of
already-integrated AI software systems: The case of apollo for autonomous
driving,” in Euromicro Conference on Digital System Design. IEEE, 2021, pp.
426–433. [Online]. Available: https://doi.org/10.1109/DSD53832.2021.00071

4

https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://ardupilot.org/
https://doi.org/10.1109/DSD53832.2021.00071

[6] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues, “Crashing
simulated planes is cheap: Can simulation detect robotics bugs early?” in 2018
IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2018, pp. 331–342.

[7] A. D. Sorbo, F. Zampetti, C. A. Visaggio, M. D. Penta, and S. Panichella, “Auto-
mated identification and qualitative characterization of safety concerns reported
in uav software platforms,” Transactions on Software Engineering andMethodology,
2022.

[8] F. Zampetti, R. Kapur, M. Di Penta, and S. Panichella, “An empirical
characterization of software bugs in open-source cyber–physical systems,”
Journal of Systems and Software, vol. 192, p. 111425, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121222001315

[9] S. Khatiri, S. Panichella, and P. Tonella, “Simulation-based test case generation
for unmanned aerial vehicles in the neighborhood of real flights,” in 16th IEEE
International Conference on Software Testing, Verification and Validation (ICST),
2023.

[10] A. Afzal, C. Le Goues, M. Hilton, and C. S. Timperley, “A study on challenges of
testing robotic systems,” in International Conference on Software Testing, Valida-
tion and Verification. IEEE, 2020, pp. 96–107.

[11] A. Afzal, “Automated testing of robotic and cyberphysical systems,” Ph.D. disser-
tation, Carnegie Mellon University, 2021.

[12] D. Wang, S. Li, G. Xiao, Y. Liu, and Y. Sui, “An exploratory study of autopilot
software bugs in unmanned aerial vehicles,” in ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 20–31.

[13] A. Afzal, D. S. Katz, C. Le Goues, and C. S. Timperley, “Simulation for robotics
test automation: Developer perspectives,” in Conference on Software Testing,
Verification and Validation. IEEE, 2021, pp. 263–274.

[14] S. Khatiri, P. Saurabh, T. Zimmermann, C. Munasinghe, C. Birchler, and
S. Panichella, “SBFT tool competition 2024 - cps-uav test case generation track,” in
IEEE/ACM International Workshop on Search-Based and Fuzz Testing, SBFT@ICSE
2024, 2024.

[15] S. organizers, “"the 17th intl. workshop on search-based and fuzz testing",” 2023.
[Online]. Available: https://sbft24.github.io

[16] S. Khatiri, S. Panichella, and P. Tonella, “"aerialist: Uav test bench",” 2023.
[Online]. Available: https://github.com/skhatiri/Aerialist

[17] PX4, “Px4 simulation,” https://docs.px4.io/v1.12/en/simulation/, 2021.

5

https://www.sciencedirect.com/science/article/pii/S0164121222001315
https://sbft24.github.io
https://github.com/skhatiri/Aerialist
https://docs.px4.io/v1.12/en/simulation/

	Abstract
	1 Introduction
	2 The Aerialist Tool
	2.1 UAV Test Description
	2.2 UAV Software Platform
	2.3 Aerialist's Test Runner

	3 Using Aerialist
	3.1 Command Line Interface
	3.2 Python Package
	3.3 Usage Scenarios

	4 Evaluation
	5 Conclusion
	References

