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Abstract—Unmanned aerial vehicles (UAVs), also known as
drones, are acquiring increasing autonomy. With their com-
mercial adoption, the problem of testing their functional and
non-functional, and in particular their safety requirements has
become a critical concern. Simulation-based testing represents
a fundamental practice, but the testing scenarios considered in
software-in-the-loop testing may not be representative of the
actual scenarios experienced in the field.

In this paper, we propose SURREALIST (teSting UAVs in the
neighboRhood of REAl flIghtS), a novel search-based approach
that analyses the logs from real UAV flights and automatically
generates simulation-based test cases in the neighborhood of such
real flights, thereby improving the realism and representativeness
of the simulation-based tests. This is done in two steps: first,
SURREALIST faithfully replicates the given UAV flight in the
simulation environment, generating a simulation-based test that
mirrors a pre-logged real-world behavior. Then, it smoothly
manipulates the replicated flight conditions to discover slightly
modified test cases that are challenging or trigger misbehaviors
of the UAV under test in simulation. In our experiments, we
were able to replicate a real flight accurately in the simulation
environment and to expose unstable and potentially unsafe
behavior in the neighborhood of a replicated flight, which even
led to crashes.

Index Terms—Autonomous Systems, Software Testing, Un-
manned Aerial Vehicles

I. INTRODUCTION

With the boost of cyber-physical systems (CPS) in both
academia and industry over the past decade, we have witnessed
impressive advancements in the technology available in health-
care, avionics, automotive, railway, and robotics sectors [1],
[2]. Unmanned Aerial Vehicles (UAVs) [3] or drones equipped
with onboard cameras and sensors have already demonstrated
that autonomous flights are possible in real environments. This
sparked great interest in a plethora of application scenarios,
with crop monitoring [4], surveillance [5], medical and food
delivery [6], and search and rescue in disaster areas [7]
representing only some of the relevant applications of UAVs.

Support for UAV developers has increased over the years,
with open-access projects for the software (i.e., firmware)
and hardware (e.g., flight controller). Well-known examples
are Ardupilot [8] and PX4 [9] (autopilot software) and Pix-
hawk [10] (open standards for UAV hardware). On the other
hand, automated testing of UAVs (and in general, CPS) to
ensure their proper behavior represents still an open research

challenge [11], [12], [13], [14], [15]. Simulation-based testing
is a promising direction to improve UAV testing practices [16],
[17], [18]. Researchers proposed the use of digital-twins,
i.e., virtual representations of real-time, physical objects or
processes, to simulate and test CPS in diversified scenarios
[19], [20], [21], [22], [23], [24], and to support test automation
[25], [26]. However, it is challenging to capture the same bugs
as physical tests in simulation [18], [11] and to generate rep-
resentative simulated test cases that expose realistic bugs [16].

To better illustrate the problem statement, let us consider
the following scenario: Bob is a UAV customer using a quad-
copter based on PX4 [9] (a popular open-source UAV firmware
enabling autonomous flight, path planning, and obstacle avoid-
ance) for crop monitoring missions over various croplands.
Since some of these lands are close to or include trees,
buildings, roads, or other populated areas and facilities, he
is particularly concerned about the safety and reliability of
his quad-copter during the missions. He has already tested
the UAV in a specific scenario over one of these lands: an
autonomous flight from a starting point S to a destination
point D, crossing a small building on the way. Bob observed
that the UAV reached the destination safely while avoiding
obstacles in the scene, but he is not yet convinced that it
will be the case in other possible scenarios and over other
lands. Specifically, he is interested to know if the UAV would
still complete the mission safely, even if the scenario was a
bit different, e.g.,different building sizes, planned paths, or
weather conditions.

Since he does not have the budget to test the UAV in all
such variations manually in the field, Bob contacts Alice, an
experienced PX4 developer, to help in the (safety) assessment
of his UAV in such diversified scenarios. As the first step,
Alice asks Bob for the Flight Logs of his field tests, as the
logs include valuable information about how the environment
was perceived by the UAV during the flights, e.g., all sensor
readings, received commands, and motor control signals.

Now, Alice has the challenge of manually analyzing the
flight logs, interpreting the results of the test, and investigating
ways to make a proper assessment of the drone in alternative,
neighboring flight scenarios. As a practical and viable strategy,
Alice decides to use simulators (e.g., Gazebo[27]) to replicate
the real test flights in simulation, and to identify close-related



scenarios that could potentially fail in the real world. However,
the problem of replicating the logged real flight in simulation
with high fidelity remains a big issue for Alice. In the context
of our work, we assume that if the UAV behavior in simulation
is in line with its behavior in the field (e.g., the trajectory
during the flight), the simulated replication can be considered
realistic. Here, the questions are: 1) how to enable Alice to
faithfully replicate a real UAV flight in simulation, by analyz-
ing the flight log coming from an unknown environment? and
2) how to enable Alice to test the UAV in a set of diversified
possible scenarios in the neighborhood of the given field test?

Software engineering researchers proposed several auto-
mated solutions to generate test cases reproducing the crashes
of software-only systems [28], [29], [30], [31], [32], [33].
However, to the best of our knowledge, no existing approach
for CPS/UAV testing [34], [17], [15], [35] addresses the
problem of test scenario replication and test case generation,
where the execution state to be reproduced is not only the state
of the program, but it involves also the state of the real world.

In this paper, we propose SURREALIST 1(teSting UAVs
in the neighboRhood of REAl flIghtS), a novel search-based
approach that automatically generates simulation-based test
cases in the neighborhood of previously logged real-world
UAV flights, thereby improving the realism of software-in-the-
loop testing. Using our approach, the work done by Alice in
the previous scenario is drastically reduced by simply giving
Bob’s flight log as an input to SURREALIST. Following the
steps described in Section III, our approach first analyses the
flight log, extracts any available UAV and environment con-
figurations, and searches for optimal values for the unknown
configurations to replicate the real-world UAV behavior in the
simulation environment. Then, it smoothly manipulates the
replicated configurations (flight conditions) to discover related
test scenarios that can potentially trigger unsafe behavior of the
UAV in simulation, which can also guide Bob toward potential
corner cases for field testing.

This paper provides the following contributions:
• A generic approach for automatically generating a

simulation-based test case that replicates a real flight sce-
nario, by searching for optimal simulation environment
configurations using only the flight log.

• A generic approach that automatically modifies a (repli-
cated) simulation-based test case to generate more chal-
lenging test scenarios.

• An empirical evaluation of a specific instance of the
generic approaches, for optimal placement of obstacles in
the simulation environment during an autonomous flight.

• A replication package [36] on Github including SURRE-
ALIST implementation and experiments data and results.

II. BACKGROUND

This section provides an overview of the UAV Architecture
and UAV Firmware and Software used in our research.

1Surrealism is an art movement aimed at resolving the previously contra-
dictory conditions of dream and reality into an absolute reality, a super-reality,
or surreality.

A. UAV Architecture

UAVs are characterized by the Perception, Planning, and
Control [37] software components, and the hardware compo-
nents that interact with the environment and the UAV software.
The Perception component is responsible for the UAV’s
understanding and modeling of the surrounding environment
based on sensor signals. The functionalities of this component
include state estimation [38], [39] and mapping [40]. State
estimation recreates the drone state in the environment and
enables navigation and autonomous movement [39], while
mapping strategies compute obstacle distances, to create a
model of the surrounding area [40]. The Planning component
aims at finding an optimal trajectory from starting point to
the destination, e.g., by computing polynomial trajectories
[41], [42] and then applying trajectory optimization [43]. The
Control component determines the actuator control com-
mands to be executed by the UAV to safely navigate the
environment and enables the autopilot (onboard commands)
and/or the ground-control station (commands from a remote
station) modalities [44], [37], [45].

B. UAV Firmware and Software

1) PX4 Platform: PX4 [9] open-source flight control plat-
form is often used to implement a UAV system. PX4 sup-
ports Software In-the-Loop (SIL) simulation to safely execute
UAV flights in simulation environments, with the purpose of
checking novel control algorithms before actually flying the
UAV, limiting the risk of damaging the vehicle. It also sup-
ports Hardware In-the-Loop (HIL) simulation, by providing
simulation inputs to the firmware deployed on a real flight
controller board.

2) PX4 Simulation Environments: Simulators allow PX4 to
control a modeled vehicle in a simulated world. Hence, PX4
communicates with a simulator (e.g., Gazebo [27]) to receive
sensor data from the simulated world and send actuator control
commands back. In this setting, the UAV pilot (user), similarly
to a real vehicle, can interact with the simulated vehicle using
a ground control station (GCS), a radio controller (RC) or an
offboard API (e.g. ROS), both to send control commands and
to receive telemetry data. PX4 supports several HIL and SIL
simulators [46]. In the context of our work, we considered
Gazebo [27] as PX4’s reference 3D simulation environment
since it is particularly suitable for testing its obstacle avoidance
and computer vision functionalities.

3) Flight Logs: PX4 logs any message communicated
between RC or GCS and UAVs, or between its internal
modules [47]. This includes the sensor outputs, location, other
estimations based on sensor readings, the commands sent to
the UAV, and the errors/warnings from the internal modules.
Logs are stored on the UAV file system after each flight, to
help investigate issues encountered during a flight and their
root causes [47]. A sample flight log [48] we used in our
experiments is visualized in the footnote link2.

2https://logs.px4.io/plot_app?log=f986a896-c189-4bfa-a11a-1d80fa4b9633
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4) Flight Modes: Flight modes define how the autopilot
responds to RC input, and how it manages the vehicle move-
ments during fully autonomous flights. Flight modes provide
different levels of autopilot assistance, ranging from automa-
tion of common tasks (e.g., takeoff and landing) or flying a
preplanned path, to mechanisms that make it easier to hold a
certain altitude level or position when needed. Flight modes
can be divided into manual and autonomous modes. Manual
modes allow the user to control the vehicle movement via the
RC sticks, while autonomous modes are fully controlled by
the autopilot, with no pilot/RC input. During an autonomous
flight, obstacle avoidance [49] can be enabled to let the UAV
locate any obstacle on its path using its onboard cameras, and
navigate around them safely to reach the destination.

III. APPROACH

The de-facto standard testing process of UAVs relies on
manually-written system-level tests for testing UAVs in the
field. These tests are defined as software configurations in a
given physical environment and a set of runtime commands
that make the UAV fly with a specific observable behavior
(e.g., flight trajectory, speed, distance to obstacles). We model
a UAV-simulated test case with the following test properties:
• UAV Configuration: Autopilot parameters 3 set at startup,

configuration files (e.g., mission plan) required.
• Environment Configuration: Simulation settings such as

simulation world (e.g., surface material, UAV’s initial po-
sition), surrounding objects (e.g., obstacles size, position),
weather condition (e.g., wind, lighting).

• Runtime Commands: Timestamped external commands
sent from GCS or RC to the UAV during the flight (e.g.,
changing the flight mode, flying in a specific direction,
starting autonomous flight).

Since the physical attributes of the simulated and real UAVs
and the surrounding environments are often not identical,
simply replaying the same set of commands sent to a physical
UAV (as recorded in the logs) would not always result in the
same observable behavior in simulators. For instance, sending
a command for going forward with full power for 1 second,
will likely not bring the real and simulated UAVs to have the
same speed and acceleration, and to cover the same distance.
This is typically due to the differences in the UAV’s real
vs simulated characteristics (e.g., weight, motors power, and
sensors accuracy) and to unpredictable environmental factors
(e.g., wind and other disturbances).

Given a field test log, SURREALIST aims to generate simu-
lated test cases that replicate, as closely as possible, real-world
observations (e.g., flight trajectory). This is done by finding
the best combination of the above-mentioned test properties,
so as to minimize some distance measure between the sensor
readings of the field test and its simulated counterpart (e.g.,
the Euclidean distance between the two flight trajectories).

Starting from this replicated simulation test, SURREALIST
generates variants in the close neighborhood of the test case,

3https://docs.px4.io/main/en/advanced_config/parameter_reference.html

with the goal of creating potentially more challenging sce-
narios. This is achieved by updating the test properties, with
the purpose of increasing the difficulty (or risk level) of the
generated test cases. The test difficulty is measured according
to a given fitness function, e.g., the minimum distance of the
UAV to the obstacles during the flight. To achieve these goals,
we propose a generic search-based approach that generates
simulation-based test cases that minimize a given distance
measure (or maximize a given fitness function) by iteratively
manipulating the corresponding test properties.

In the following sections, we first describe the generic
approach to generate test cases that optimize a given fitness
function. Then, we instantiate it for replicating the flight
trajectory of autonomous flights, and for generating challeng-
ing test cases for maintaining safe distance to the obstacles,
by manipulating obstacles in the simulation environment. It
is important to note that the generic approach can also be
instantiated to replicate other UAV behaviors (e.g., speed,
acceleration, outputs to motors), or generate challenging test
cases w.r.t other requirements (e.g., UAV stability, mission
duration, power consumption), and by manipulating other test
properties (e.g., wind, planned waypoints, runtime commands)
which are out of the scope of this paper..

A. Generic Approach

1) Context: The proposed generic approach can be used in
two different contexts:

A) [Flight Replication] Given a real flight log, the goal
is to generate a simulation-based test case that replicates the
flight w.r.t. specific UAV behavioral properties. The behavioral
properties to reproduce can be any logged variable, such as
outputs to the actuators (motors thrust), raw inputs coming
from sensors, or higher-level variables calculated from them
(e.g., UAV position in the 3D space), with the replication ac-
curacy measured by a distance metric (or similarity measure).
For instance, by choosing to replicate the 3D space position
variables we create a simulated flight with a similar trajectory
as that recorded in the real-world log.

B) [Test Generation] Given a simulation-based test case,
the goal is to generate variants of such test that are more
challenging w.r.t specific difficulty measures. The difficulty of
the test case is calculated based on the risk level of violating
(safety) requirements, such as flying too close to obstacles.

We formulate both problems as a search problem focused
on finding the optimal test properties that maximize a relevant
fitness function.

2) Search Algorithm: Algorithm 1 details our approach.
Overall, the search is an iterative process that finds the best
mutations to apply to the current solution at any given step.

The process starts with an initial seed solution (test proper-
ties). In the context of flight replication, the seed is available
directly from the raw data in the original flight log. It includes
the logged drone configurations, RC command series, and
potential obstacle information that can be extracted from
distance sensors. In the case of test generation, the seed
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consists of an existing simulation-based test case, from which
the algorithm generates more challenging variants.

The second input, fitness_func, is the function computing
the fitness of the solutions. It gets the simulated flight logs
as input, and computes a fitness value according to the given
goal (see section III-A4). For flight replication, it consists of
a distance metric between the original flight sensor values and
the simulated ones, as described in detail in section III-B. For
test generation, it consists of a risk assessment measure for
the given test case, as described in detail in section III-C.

The third input is the budget assigned to the search process:
the maximum number of test case evaluations performed
before returning the final solution found during the search.
We measure the search budget as the number of allowed test
case evaluations since evaluating a candidate test is the most
expensive operation performed by the proposed algorithm, as
it consists of a full simulation of the UAV behavior. The final
input, min_rounds corresponds to the minimum ensured rounds
of global search (the while loop in lines 6-11).

The initial best solution is set at line 2 as the seed. At line
3, we initialize an empty dictionary, named evaluation_hash
which will record all the evaluated solutions and their fitness
values as the algorithm proceeds. evaluation_hash will be
used by the function EVALUATE (described in section III-A3,
pseudo-code not shown for space reasons) to implement mem-
oization, i.e., to skip the simulations if the same test properties
have been already evaluated in previous iterations and directly
set the fitness value as obtained from the dictionary. The
EVALUATE function is also in charge of updating the exe-
cution budget, which is decreased by one when a simulation
is needed, while it is left unchanged if the fitness for the
requested execution is available from evaluation_hash (the last
parameter, which is NULL at line 4, is a local budget updated
similarly to the global one).

After evaluating the initial seed solution, which consumes
one simulation from the budget, the main optimization loop is
entered at line 6. The loop terminates when the local search,
invoked at line 10, is unable to find a better solution for
all parameters that can be mutated in the test properties. We
assume here that test properties come with mutators, i.e., pa-
rameterized operators that can be applied individually to each
test property. For example, the property obstacle.position.x
can be modified by an additive mutator, which moves the
current position of the obstacle in the simulation environment
along the x axis by a parameter value called MOV E_X .

The for loop at line 9 iterates over all mutators available
for the given test properties and tries to optimize each of them
individually by invoking a local optimization procedure at line
10. The local budget is obtained by uniformly distributing
the available budget across all mutators in the remaining
ensured rounds (line 8), with each local search not necessarily
consuming entirely its local budget. Hence, when re-entering
the while loop at line 6, the residual global budget might still
be available for the next iteration.

Algorithm 2 shows the details of the local search. This
algorithm can be classified as an adaptive greedy algorithm

Algorithm 1: GENERIC-TEST-PROPERTIES-
SEARCH

Input: seed: original test properties
fitness_func: fitness function to maximize
budget: global search budget (max num of

simulations)
min_rounds: minimum ensured round of global search

Result: best: test properties that optimize the fitness
1 begin
2 best = seed
3 evaluation_hash = {}
4 EVALUATE(fitness_func, best, evaluation_hash, budget,

NULL)
5 improved = true
6 while improved do
7 improved = false
8 local_budget = budget/(|seed.mutators|×min_rounds)
9 for mutator in seed.mutators do

10 improved = improved ∨
LOCAL-TEST-PROPERTIES-SEARCH(best,
mutator, evaluation_hash, local_budget, budget)

11 min_rounds = min_rounds - 1

12 return best

that searches the parameter space of each mutator. We chose
a greedy technique to reduce the number of simulations
needed to reach the optimum (executing an entire simulation
is computationally expensive). At the same time, to avoid the
choice of a sub-optimal greedy optimization step, we adapt
the step parameter as the algorithm progresses.

Each mutator comes with a default value and a default step.
The default value is a value that leaves the test properties
unchanged. For a multiplicative mutator, it is 1; for an additive
mutator, 0. The default step is mutator specific. For example,
the mutator that moves the obstacle along the x axis has a
default value of 0, because it is additive, and has a default step
of 4 meters. The default step is defined specifically for each
mutator parameter, based on the expected parameter range. Its
value is not critical, as the local search adjusts it in an adaptive
way. At lines 2-3 the default step and parameter value for the
given mutator are assigned to the variables step, param.

The optimization loop starts at line 7, with 2 termination
conditions: the local budget expired, or no improvement in
the best solution for more than MAX_IT iterations.

In lines 8-9, we create two mutated solutions by either
increasing or decreasing the mutator parameter by the current
optimization step. These candidate solutions are evaluated at
lines 10-11 (function EVALUATE will skip simulation if the
test properties can be found in evaluation_hash). Then, if
either the first mutated solution or the second one improves
the current best solution by a margin higher than ε, the new
best solution is recorded. Otherwise, if we are in a plateau
(line 29) the optimization loop stops, while if both mutations
mu1, and mu2 have decreased the fitness value by an amount
greater than ε (else case at line 28 with a false condition at
line 29), the optimization step is halved adaptively (line 31).

If the same step is applied multiple times in the positive
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Algorithm 2: LOCAL-TEST-PROPERTIES-SEARCH
InOut: best: best solution found so far
Input : mutator: test property mutator
InOut: evaluation_hash: memory of past evaluations
Input : local_budget: max simulations for current mutator
InOut: budget: overall max simulations allowed
Result: improved: previous best solution was improved

1 begin
2 step = mutator.default_step
3 param = mutator.default_value
4 positive_moves = negative_moves = 0
5 iter_with_no_improvements = 0
6 new_best = best
7 while local_budget > 0 ∧ iter_with_no_improvements <

MAX_IT do
8 mu1 = MUTATE(best, mutator, param + step)
9 mu2 = MUTATE(best, mutator, param - step)

10 EVALUATE(mu1, evaluation_hash, budget,
local_budget)

11 EVALUATE(mu2, evaluation_hash, budget,
local_budget)

12 if mu1.fitness > new_best.fitness + ε ∧ mu1.fitness >
mu2.fitneess then

13 new_best = mu1
14 param = param + step
15 positive_moves += 1
16 negative_moves = 0
17 iter_with_no_improvements = 0
18 if positive_moves > MAX_SEQ_IT then
19 step = step · 2

20 else if mu2.fitness > new_best.fitness + ε then
21 new_best = mu2
22 param = param - step
23 negative_moves += 1
24 positive_moves = 0
25 iter_with_no_improvements = 0
26 if negative_moves > MAX_SEQ_IT then
27 step = step · 2

28 else
29 if |new_best.fitness - mu1.fitness| < ε ∧

|new_best.fitness - mu2.fitness| < ε then
30 break

31 step = step / 2
32 positive_moves = negative_moves = 0
33 iter_with_no_improvements += 1

34 improved = false
35 if new_best 6= best then
36 best = new_best
37 improved = true

38 return improved

(resp. negative) direction, at line 19 (resp. 27) the optimization
step is doubled, to converge more quickly to the final solution.
The local search terminates by assigning the new best solution
to the input/output variable best, which is eventually returned
by Algorithm 1. It returns true if a better solution was found
during the local search; false otherwise.

3) Solution Evaluation: To evaluate a search solution, i.e.,
the candidate test properties, we generate and execute the

corresponding simulated test case automatically. The test case
automates all necessary steps: setting up the test environ-
ment, building and running the firmware code, configuring
the simulator with the simulated world properties, connecting
the simulated UAV to the firmware, and applying the UAV
configurations from the test case properties at startup. Then,
the test case commands are scheduled and sent to the UAV, the
flight is monitored for any issues, and after test completion,
the flight log file is extracted. Due to the nature of the
control mechanisms and the surrounding environment, the
UAV behavior (both in simulation and in the real world) can
be non-deterministic. To eliminate the effects of outliers in our
experiments, we run each test case n times, extract the logs,
and use the average of the variables recorded in the logs for
computing the fitness function.

4) Fitness Function: Our search algorithm has the overall
goal of maximizing the given fitness function (fitness_func)
provided as input to the algorithm with the following signature:
fitness_func(flight_logs : List < Log >)→ float
The input is a list of flight logs, obtained from multiple

executions of the same simulation-based test case. The output
is a numeric value measuring the overall fitness of the test
case w.r.t. our goal. Since the fitness function is maximized
by the local search algorithm (see lines 12, 20), when the goal
is to minimize some metric value (e.g., the distance d between
trajectories) we supply the negation of the metric value (−d)
as the fitness function.

B. Flight Replication in Autonomous Mode

1) Context: Given the flight log and the mission configura-
tion of an autonomous flight that includes a given number of N
(> 1) obstacles, with unknown size and position, we generate
a simulated test case that includes the optimized size and
position of the obstacles, with similar UAV trajectory in simu-
lation. We propose an instance of our generic flight replication
algorithm for this problem. In PX4’s autonomous mode, the
mission is uploaded to the UAV in advance. After the mission
start command, the UAV follows the mission waypoints in
a completely autonomous way. If obstacle avoidance [49] is
enabled, the UAV will use its distance sensors and camera to
locate any obstacle on the way and will automatically find its
way to the next waypoint beyond the obstacle.

2) Fitness Function: Since the relevant logged variables are
time series, the fitness function must be able to compare two
time series, measuring the distance between the sequence of
replicated states from the simulation log (intermediate solu-
tions of the search algorithm) and the sequence of expected
states from the original log (real-world flight to be replicated).
As a general-purpose fitness function that could potentially
work on any metrics from the original log, we use Dynamic
Time Warping (DTW) [50], a well-known distance measure
for multi-dimensional time series of different lengths that has
already been used for comparing UAV flight trajectories [51].
DTW is based on a dynamic programming algorithm that
matches the elements appearing in two sequences s, t by find-
ing the pairing that minimizes the overall cost. The minimum
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cost for pairing the element in position i from s with the
element in position j from t is recursively determined as:

DTW [i, j] = d(si, tj) + min{DTW [i− 1, j],

DTW [i, j − 1], DTW [i− 1, j − 1]}
(1)

where d(si, tj) is the distance between the metric values
appearing at position i (resp. j) in the two logs (in the simplest
case, just the Euclidean distance ‖si−tj‖), while the recursive
choice of the minimum DTW value corresponds respectively
to advancing the pairwise comparison by one position along
the first list only, the second only, or both. Here, the compared
sequences s and t are UAV trajectory points 〈x, y, z〉.

Since we run each test scenario multiple times to eliminate
outliers’ effect, we also need an aggregation function to group
the logs obtained from multiple runs of the same simulated
test scenario into one, coherent time series to be compared
by DTW. Here, we adopt DTW Barycenter Averaging [52],
an averaging method for time series data that determines and
keeps the shape of the series, while computing the average.

3) Test Case Properties: The physical world is assumed
to be a plain area with N obstacles of predefined shape
(e.g., box). Since the flight is operated in autonomous mode,
the only variable properties of the generated test cases are
the obstacle properties, i.e., the size (length, width, height),
position (x, y, z), and rotation angle (r) of each obstacle.

4) Mutation Operators: To search for the optimal obstacle
properties, we use the following mutation operators for any of
the N obstacles individually:

Move: This mutation operator moves the obstacle from the
previous location in the simulated world by ∆x,∆y . We ignore
the z dimension since we assume the boxes are always placed
on the ground.

Resize: This mutation operator resizes the obstacle in place
(keeping the center position) by ∆l,∆w,∆h.

Rotate: This mutation operator rotates the obstacle around
its geometric center in the x,y plane by ∆r degrees.

5) Seed: If no information on the placement and size of
the N obstacles is available in the original log, we create
an initial seed solution by randomly placing N obstacles in
positions that intersect with the mission flying area.

C. Test Case Generation in Autonomous Mode

To find challenging and buggy UAV fly conditions, we
designed another instance of the generic approach (Algorithms
1, 2), which generates challenging test scenarios, starting from
the output of flight replication. The search seeds are the final
solutions of the algorithms instantiated in Section III-B.

1) Context: Given a simulated test case configuration for
autonomous flight (the mission waypoints and obstacle lo-
cations and sizes), we want to generate a more challenging
simulated test case by introducing an additional obstacle, to
force the UAV to get too close to the obstacle (i.e., having
a distance below a predefined safety threshold) while still
completing the mission. This will create a risky environment
for the UAV to operate the mission.

Most of the algorithm is identical to the algorithm instance
described in Section III-B for autonomous flight replication,
with few modifications. Specifically, we use the same test
case properties (location, size, and rotation of the additional
obstacle) and the same mutation operators (move, resize and
rotate). The fundamental distinction is in the fitness function.

2) Fitness Function: We define the fitness such that the
algorithm is guided to get the drone close to all the obstacles
in general and close to the border of one obstacle in particular.
Correspondingly, the fitness function has two components:

sum_dist = min
p∈trj.points

∑
o∈obs

d(p, o)

min_dist = min
o∈obs,p∈trj.points

d(p, o)

fitness = sum_dist + 2× min_dist

(2)

sum_dist accounts for the minimum distance of a single
trajectory point to all of the obstacles combined (favoring
obstacles closer to each other), while min_dist accounts for the
minimum distance of the trajectory to any of the obstacles (to
be compared against the safety distance). We give the min_dist
component a weight that is twice the weight of the sum_dist
component, because it is expected to contribute the most to
the generation of risky test scenarios.

In this case, since in multiple runs of the same test case
(parallel simulations), the flight trajectories can differ signif-
icantly from each other in corner cases (test cases with low
min_dist), instead of taking the average trajectory, we take
the trajectory with the lowest fitness value when returning the
fitness value for a given mutation of a test scenario.

IV. EXPERIMENTAL RESULTS

The goal of our empirical evaluation is to assess SURRE-
ALIST’s ability to replicate a logged UAV flight and to manip-
ulate it to expose challenging flight conditions. In this section,
we elaborate on the research questions, evaluation scenarios,
and the results obtained when evaluating our approach.

A. Research Questions

1) RQ1 [Flight Replication]: Can we generate simulated
test cases that faithfully replicate autonomous flight
trajectories? The goal is to replicate the test environment in
a way that makes the simulated flight trajectory as similar
as possible to the original one, using only logged data
as input information. The variable test properties are the
environment configurations where the UAV flies a predefined
mission autonomously. We investigate an environment
setup where placing an obstacle on the map can influence
the trajectory, making it more or less similar to the logged one.

2) RQ2 [Test Generation]: Can we modify simulated test
case properties of autonomous flights to make them more
challenging for the UAV autonomous controller? The goal is
to investigate the possibility of generating more challenging
test cases based on an existing one, replicated from a real-
world test. Specifically, we investigate a similar environment
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setup as RQ1 where placing an additional obstacle properly
can result in unsafe or faulty behavior of the UAV.

B. Subject and Original Flights

The subject of our experiments is PX4’s [9] Autopilot con-
trolling a quad-copter. For RQ1, we consider an original flight
conducted in a real-world environment containing an obstacle
along the mission route. We set up the PX4 Vision Autonomy
Development Kit4, enable module PX4-Avoidance [49], and
define a survey mission consisting of taking off to 3 meters
altitude, flying towards a waypoint at about 20m distance,
and landing. The test field is an empty parking area, with
a cargo container sized about 2.5m× 12m× 2.5m placed in
the middle. The original flight trajectory, as extracted from the
flight log [48] is shown in Figure 1 (left) as a blue line.

For RQ2, we consider a simulated test case in Gazebo [53]
with a similar setup (taking off to 10 meters altitude, flying
towards a waypoint at about 50m distance, and flying back to
the landing point, about 12m to the left of the starting point).
We put a box-like obstacle (representing a small building)
sized 8m × 5m × 20m on the direct route towards the
destination. Then, we ran SURREALIST to generate more
challenging environment configurations, obtained by adding
a second obstacle to the environment. The flight trajectory, as
extracted from the flight log, is shown in Figure 2 (middle).

C. Metrics and Experimental Procedure

To run our experiments, we set the hyper-parameters of
Algorithms 1,2 (see Section III-A) to the values reported in
Table I. To evaluate our approach, we run SURREALIST
to replicate the flight trajectory (RQ1) or generate test cases
(RQ2), applying 10 repetitions with the same configurations,
to gain statistical validity of our results. To deal with the
non-determinism of simulated trajectories, at each step of the
algorithms, we run multiple simulations in parallel (5 for RQ1

and 10 for RQ2 because of the higher non-determinism in
the corner test cases; see parameter sim. runs in Table I). We
run SURREALIST inside Docker containers in a Kubernetes
cluster, with main algorithm containers limited to 1.5 virtual
CPUs (VCPUs) and 15GB of Ram and simulation containers
(running PX4 and Gazebo) limited to 6 VCPUs and 2 GB.

For the best found solutions of each algorithm repetition, we
computed the metrics in Table II. We measure the reduction in
DTW distance from the original (org) when flight reproduction
is achieved by SURREALIST (best) with respect to the search
seed, as well as the reduction in Fréchet distance [54] for
RQ1. Fréchet distance is defined as the maximum distance
observed when traveling through the two trajectories (original
and replicated flights), considering an optimal mapping of
the points visited along the two trajectories. For RQ2, the
seed for the additional obstacle has the same size as the first
obstacle and is placed 15m to the right side of it, so that it
does not affect the flight trajectory compared to the original
test (figure 2, middle). To ensure the realism of the second

4https://docs.px4.io/v1.12/en/complete_vehicles/px4_vision_kit.html

TABLE I: Experiment Hyper-parameters

RQ Parameter Value

RQ1,2 repetition 10
RQ1,2 MAX_SEQ. 5
RQ1,2 MAX_IT 5
RQ1,2 default_step 4m (MOVE, RESIZE), 30◦ (ROTATE)
RQ1,2 default_value 0m (MOVE, RESIZE), 0◦ (ROTATE)
RQ1,2 ε 0

RQ1 budget 200 (seed 1), 100 (seed 2)
RQ1 min_rounds 4 (seed 1), 2 (seed 2)
RQ1 sim. runs 5

RQ2 budget 50
RQ2 min_rounds 2
RQ2 sim. runs 10

TABLE II: Experiment Evaluation Metrics
Metric Definition

DTW Reduction (RQ1) = 1− DTW (best,org)
DTW (seed,org)

(%)

Fréchet Reduction (RQ1) = 1− Frechet(best,org)
Frechet(seed,org)

(%)

Min_dist Red. (RQ2) = 1− Min_dist(best)
Min_dist(seed) (%)

Crash & Unsafe Rate (RQ2) = % of crash & unsafe in the simulations of best
P-value comparing seed and best fitness distributions
Effect Size comparing seed and best fitness distributions
Needed Budget = # of evaluations to reach best
Eval. Time = average time for each solution evaluation

obstacle, we kept its initial size and angle and used only the
Obstacle Move mutation. For RQ2, we measure the reduction
of the minimum distance between the UAV and obstacles as
well as the percentage of failing (crashing to obstacle) and
unsafe (getting closer than 1.5m) simulations for the best
generated test cases. We also report the needed evaluation
budget (solution evaluations through simulation) to reach the
best solutions and the average evaluation time for each solution
(run the parallel simulations and process the logs). For each
of these metrics, we report the average across 10 repetitions.

Once we have collected all the data, we used statistical tests
to verify whether there is a statistically significant difference
between the seed and the best solution for both RQs across
the algorithm repetitions. We employed parametric tests since
the Shapiro-Wilk test revealed that the distributions across all
experiments follow a Gaussian distribution (p� 0.05). Hence,
we used the one-way Anova test with a p-value threshold
of 0.05. We also computed the effect-size of the observed
differences using the Vargha-Delaney (Â12) statistic [55].
The Vargha-Delaney (Â12) statistic classifies the quantitative
effect size values into four qualitative levels (negligible, small,
medium, and large), which are easier to interpret.

D. Results

1) RQ1 [Flight Replication]: The seed obstacle is a small
(3m × 3m × 3m) box, aligned with the direct path between
takeoff and landing position as extracted from the original log.
We do the experiments with two different positioning of this
obstacle as seed, illustrated in Figure 1 (left). One is placed
right below the center of the direct path (seed 1) so that the
UAV is probable to fly around the obstacle from the right side,
and the other is placed on the opposite side (seed 2) so that
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Fig. 1: RQ1 Seeds 1 and 2 (left) and Final (right) solutions (simulated in Gazebo) compared to the real-world flight

TABLE III: RQ1 Evaluation metrics for both seeds

seed 1
Metric Ave.

Seed DTW 383.5
Best DTW 63.15
DTW Red. 83.1%
Seed Fréchet 6.87 (m)
Best Fréchet 1.14 (m)
Fréchet Red. 83.4 %
P-value 1.9 e-12
Effect Size 7.9
Needed Budget 74.8
Eval. Time 152.9 (s)

seed 2
Metric Ave.

Seed DTW 116.1
Best DTW 59.1
DTW Red. 48.8%
Seed Fréchet 2.25 (m)
Best Fréchet 1.05 (m)
Fréchet Red. 51.6 %
P-value 1.2 e-12
Effect Size 8.13
Needed Budget 65
Eval. Time 158.9 (s)

the UAV is more likely to fly to the left side. The two choices
aim to analyze if the algorithm is equally effective when the
starting trajectory is on different sides of the obstacle.

As can be seen in Figure 1, showing the best final solution
across 10 runs for Seed 1, SURREALIST was able to position
and size the obstacle very well, so that the trajectory of the
replayed flight is almost identical to the original one (with
less than 75cm Fréchet distance). During this specific run,
the obstacle was moved 2m upwards, rotated 30◦ clockwise,
and the height was increased by 2.8m by the algorithm over
the iterations. Although the final obstacle properties are not

identical over the 10 runs, the very low DTW between the
simulated and original trajectories shows that we do not need
to replicate the exact same obstacle configurations to be able
to test the UAV in the same manner.

As reported in Table III, the algorithm was able to locate
and size the obstacles consistently well in all 10 runs for
both seeds, finding solutions with an average DTW of 63
and 59 respectively, which corresponds to an almost identical
trajectory, while reducing the seed DTW by 83% and 48%
with respect to the distance obtained with the seed obstacles.
The two compared DTW distributions are Gaussian (p > 0.3
in the Shapiro-Wilk test), so we could use the Anova test:
a low p-value (� 0.01) and a large effect size (7.9 � 0.8)
suggest that the improvement achieved by the algorithm is
statistically significant and extremely large.

Table III reports both the average required budget (i.e., the
average number of evaluations) and the evaluation time (in
seconds). With the search budget set to 200 simulations for
Seed 1 (100 for Seed 2), on average the final solution was
found after 75 (65) evaluations and about 3.5 minutes were
used to run all the computations (parallel simulations and
distance calculations) at each solution evaluation, adding up to
almost 5 hours for each run of the experiment. Figure 2 (left)
shows the convergence of the fitness over the iterations. The
initial round of mutations (iterations 1-58) are contributing
to most improvements in the fitness function, while during
the second and third rounds (59-117, 118-165) only marginal
improvements are observed.

Discussion on minimum feasible distance: As can be seen
in the flight trajectories in Figure 1 (right), the individual
runs of the exact same test case can have slightly different
trajectories due to the simulation randomness. Although we
already mitigated this with the averaging method discussed
in Section III-B2, it also limits the minimum DTW distance
that can be possibly reached from the original flight. To
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Fig. 2: RQ1 Fitness progress over iterations (left), RQ2 Seed (middle) and Final solutions (right)

estimate the potential lower bound due to the simulation
randomness, we took the average flight trajectories from the
seed solutions of all the 10 runs, and computed their pairwise
DTW distance to each other. These distances were in the range
[15.9− 121.3] with an average of 58.5. This means that, due
to the simulation randomness, even replicating a simulated
flight in the same simulator, by putting the exact same test
configurations, could reach a DTW distance within this range.
Hence, this average (58.5) can be considered as the bottom-
line for our optimization process, which indeed reached an
average DTW distance of 63.15 when starting from Seed 1;
59.1 when starting from Seed 2.

RQ1: The information available in the flight logs allows
searching for optimal test properties that faithfully replicate
UAV autonomous flight trajectories in simulation.

2) RQ2 [Test Generation]: As can be seen from the best
final solution across 10 runs in Figure 2 (right), SURREALIST
was able to position and size the second obstacle in a way
that the UAV (i) was forced to behave in a non-deterministic
way across the parallel simulations; (ii) experienced an unsafe
behavior, often too close to the first obstacle; (iii) even worse,
occasionally crashed into the obstacle in some simulations.
The second obstacle was moved by SURREALIST to almost
8m to the left and 1.1m upwards, making it increasingly
harder for the UAV to follow the path. Interestingly, if we
position the obstacles even slightly closer to each other, the
UAV would act in a safe and deterministic way, always flying
risk-free around the left of the first obstacle. Indeed, we have
found a bug regarding the violation of a safety requirement,
i.e., maintaining a minimum distance to the obstacles.

As reported in Table IV, the algorithm was able to find
crashing test cases consistently in all 10 runs, forcing the UAV
to get as close as 0m to the obstacle, down from the 3.3m safe
distance for the seed. Also, on average, the UAV crashed into
the obstacle in around 3 out of the 10 simulations for the best

TABLE IV: RQ2 Evaluation metrics

Metric Ave.

Seed Min_dist 3.36
Best Min_dist 0
Min_dist Red. 100%
Crash Rate 25 %
Unsafe Rate 84 %
P-value 6.7 e-12
Effect Size 119.9
Needed Budget 36.8
Eval. Time 388.1 (s)

test cases found, and got unsafely close (<1.5m) in 5 more.
The two compared distance distributions are Gaussian (p >

0.69 in the Shapiro-Wilk test), so we could use the Anova test:
a low p-value (� 0.01) and a large effect size (119.9� 0.8)
suggests that the improvement achieved by the algorithm is
statistically significant and extremely large.

RQ2: Modifying a simulation-based test case allows gen-
erating challenging test cases that can expose the UAV to
unsafe behaviors or even crashes.

E. Threats to validity

Threats to construct validity concern the metrics used to
draw a relation between theory and observation. The distance
between the trajectory reproduced in the simulator and the
original log’s trajectory is affected by randomness, due to
various sources of noise and non-determinism that affect the
simulation environment (e.g., the effect of the wind or the
multi-threaded execution in the simulator). Hence, we cannot
consider one solution to be closer to the log than another if
their trajectories have a small difference (see "Discussion on
minimum feasible distance" in Section IV-A). To address this
threat we introduced a distance threshold MIN_DIST and two
trajectories are regarded as equivalent if their distance is lower
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than MIN_DIST. When comparing a simulated trajectory to the
log data, we take the average trajectory over 5 simulations to
reduce the effects of non-determinism. To gather statistically
significant results, we repeated our experiments 10 times.
For what concerns the choice of the distance metric used to
compare trajectories during the evaluation, we adopted DTW
[50] and Fréchet[54], well-known metrics that have already
been used before for comparing UAV flight trajectories [51].

Threats to internal validity concern the technologies used
to generate the UAV scenarios and tests. To increase the gen-
erality of our results we could have used also other supported
simulators (e.g., jMAVSim). However, it is acceptable to use
Gazebo as PX4’s reference simulation environment since it
is suitable for testing the obstacle avoidance functionalities.
Another threat that affects the internal validity is the choice
of the seeds for the obstacles used to answer RQ1 and RQ2.
We used two different seeds for RQ1 with the flight trajectory
being on different sides of them, and a seed additional obstacle
for RQ2 that does not affect the flight trajectory. While our
choices were aimed to minimize the effect of the seed solution
on the evaluations, a replication with other obstacle types and
seed position/size is needed to corroborate our findings.

Threats to external validity concern the generalization of our
findings. Although we experimented with a widely used UAV
firmware and simulator (PX4 and Gazebo), we cannot claim
that our results can be generalized to other UAV platforms or
other CPS domains. Therefore, further replications and studies
considering more CPS domains are desirable.

Conclusion validity threats concern our conclusions about
the improvement brought by our algorithm. After verifying its
applicability conditions, we used the parametric Anova test to
verify that there is a statistically significant difference between
the fitness values of seed and final solutions.

V. RELATED WORKS

Wang et al. [18] studied UAV software bugs from UAV
Autopilot platforms (PX4 [9] and Ardupilot [8]) and created a
taxonomy of UAV bugs and identified their root causes. They
report that developers mainly use simulators for reproducing
bugs, but setting up realistic-enough simulation environments
that capture the same bugs as physical tests is a hard and
expensive task. Afzal et al. [11], [51] studied the challenges
of testing robotic systems and recognize the engineering com-
plexity of the test environment, including the design of realistic
inputs to test the system, as one of the biggest challenges.
Afzal et al. [16] surveyed robotic practitioners on their use
of simulators for testing robots and identified the reality gap
of the robot behavior in simulation and the reproducibility of
issues encountered in real or simulated tests in simulation as
the top challenges they face. Timperly et al. [17] conducted
an empirical study on fixed bugs in Ardupilot [8] and found
that many bugs can be potentially detected before field tests
if proper simulation-based testing is in place.

Lindval et al. [56] developed a framework for automated
testing of autonomous drones in simulation with the aim of
solving the test oracle definition problem. Recently, Woodlief

et al. proposed PHYS-FUZZ [57], a fuzzing approach tailored
specifically for testing mobile robots, taking into account the
physical attributes and hazards of such robots. To address
the simulation-reality gap, Hildebrandt et al. [58] propose
a mixed-reality approach for testing UAVs. Their approach,
called world-in-the-loop simulation, integrates and mixes sen-
sor data from both the simulated and real world, and feeds
these mixed sensor inputs to the system under test (UAV).

Complementary, we address UAV simulation-based testing
challenges concerning realistic test cases, engineering com-
plexity, and field test reproducibility, by an approach that
faithfully replicates real-world test scenarios in simulation and
generates similar but challenging variants of these test cases.

Testing of Deep Learning (DL) based systems is a research
area that has attracted a growing interest in the last few years.
Traditional testing techniques have been adapted to the specific
features of machine learning components, addressing problems
such as test input generation [59], [60], [61], [62], [63], test
oracle definition [64], [65], and test adequacy [66], [59], [67].

In the existing DL testing literature, most related works deal
with automated test data generation. Only a few input gener-
ators are model-based and expose failures within a simulated
environment. Gambi et al. [68], Stocco et al. [64]. Riccio et
al. [69], Birchler et al. [22], [70], [71], and Abdessalem et
al. [72] test self-driving cars by generating failure-inducing
driving scenarios. We share with them the usage of a simulator
to control the environment in which an autonomous vehicle is
tested, but differently from these works, we aim at generating
realistic simulated test cases by first reproducing flying con-
ditions experienced in the field and then manipulating such
conditions to identify failure scenarios.

VI. CONCLUSION AND FUTURE WORK

Simulation-based testing of UAVs is an important quality
assurance step before systems can be released to production.
We have proposed a generic adaptive greedy algorithm that can
be instantiated to replicate a flight trajectory observed in the
field and manipulate it in order to expose misbehaviors. Our
experimental results show that SURREALIST, implementing
our approach, can achieve faithful flight replication by recon-
structing the obstacles encountered along the mission’s path.
After replication, SURREALIST is also able to manipulate the
obstacles in the environment to find challenging conditions that
lead to unsafe behavior of the UAV.

In our future work, we plan to investigate surrogate models
that can predict the behavior of the UAV without actually
running any simulations. Such models can guide our adaptive
greedy search algorithm at low computational cost, making
the search more efficient and potentially capable of exploring
more complex critical scenarios. We also intend to experiment
with additional UAV models and environment configurations,
including e.g. different weather conditions and obstacle types.
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